CME 305: Discrete Mathematics and Algorithms
 Instructor: Reza Zadeh (rezab@stanford.edu)
 Midterm Winter 2015

1. (5 points) Prove that every tree on n nodes has a vertex cover of size at most $\left\lceil\frac{n-1}{2}\right\rceil$
2. (10 points) The long-bar-bell graph on n nodes consists of two cliques of size $n / 3$ with a chain of length $n / 3$ connecting the two cliques. Prove that the long-bar-bell graph has covering time $\Theta\left(n^{3}\right)$ (upper and lower bound needed)
3. (10 points) Prove that every tree has at most one perfect matching.
4. (15 points) The SetCover problem is as follows: Given a set E of elements and a collection S_{1}, \ldots, S_{n} of subsets of E, is there a collection of at most k of these sets whose union equals E ? Prove that SetCover is NP-complete.
5. (10 points) Prove that a graph with minimum degree $n / 2$ must have effective resistance $O(1)$.
